Elastoplastic Large Deformation Using Meshless Integral Method
نویسندگان
چکیده
In this paper, the meshless integral method based on the regularized boundary integral equation [1] has been extended to analyze the large deformation of elastoplastic materials. The updated Lagrangian governing integral equation is obtained from the weak form of elastoplasticity based on Green-Naghdi’s theory over a local sub-domain, and the moving least-squares approximation is used for meshless function approximation. Green-Naghdi’s theory starts with the additive decomposition of the Green-Lagrange strain into elastic and plastic parts and considers a J2 elastoplastic constitutive law that relates the Green-Lagrange strain to the second Piola-Kirchhoff stress. A simple, generalized collocation method is proposed to enforce essential boundary conditions straightforwardly and accurately, while natural boundary conditions are incorporated in the system governing equations and require no special handling. The solution algorithm for large deformation analysis is discussed in detail. Numerical examples show that meshless integral method with large deformation is accurate and robust.
منابع مشابه
Meshless Method for Modeling Large Deformation with Elastoplasticity
Over the past two decades meshless methods have attracted much attention owing to their advantages in adaptivity, higher degree of solution field continuity, and capability to handle moving boundary and changing geometry. In this work, a meshless integral method based on the regularized boundary integral equation has been developed and applied to two-dimensional linear elasticity and elastoplas...
متن کاملA numerical solution of mixed Volterra Fredholm integral equations of Urysohn type on non-rectangular regions using meshless methods
In this paper, we propose a new numerical method for solution of Urysohn two dimensional mixed Volterra-Fredholm integral equations of the second kind on a non-rectangular domain. The method approximates the solution by the discrete collocation method based on inverse multiquadric radial basis functions (RBFs) constructed on a set of disordered data. The method is a meshless method, because it ...
متن کاملAn Advanced Meshless Technique for Large Deformation Analysis of Metal Forming
The large deformation analysis is one of major challenges in numerical modelling and simulation of metal forming. Although the finite element method (FEM) is a well-established method for modeling nonlinear problems, it often encounters difficulties for large deformation analyses due to the mesh distortion issues. Because no mesh is used, the meshless methods show very good potential for the la...
متن کاملElastoplastic Buckling Analysis of Plates Involving Free Edges by Deformation Theory of Plasticity (RESEARCH NOTE)
Abstract In this paper elastoplastic buckling of rectangular plates with different boundary conditions are investigated. Differential governing equations of plate are obtained on the basis of general loading and according to deformation theory (DT) of plasticity. Various loading conditions contain uniaxial, biaxial and shear are studied. The employed material is AL7075T6 which is usually used...
متن کاملA Computational Meshless Method for Solving Multivariable Integral Equations
In this paper we use radial basis functions to solve multivariable integral equations. We use collocation method for implementation. Numerical experiments show the accuracy of the method.
متن کامل